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Abstract: The inevitable task in the development of realistic linear programing model is the collection of accurate and reliable numerical 

values for the coefficients. In any occasion, only estimated or average values of the coefficients are available. Therefore, we are 

compelled to estimate the problem to be determined. Hence, it is important to study the behaviour of solutions to a linear programming 

problem when the coefficients of the values are allowed to fluctuate. To find the optimality and to determine what happens to the optimal 

solution when certain changes are made in the system is crucial. We are still able to observe what happens to the linear programming 

coefficients under investigation as they continuously change their values that are linear functions of a parameter. Moreover, we would 

like to determine the effects of those changes without having to solve a new problem or a series of new problems afresh with respect to the 

established lemmas. 
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Introduction 

A Mathematical Model Comprises of independent and dependents variables and a system of relationship in the form of equations or 

inequalities that exist between the variables. Mathematically, the numerical methods employed to solve the equations underlying the 

mathematical model are often the important aspect of the model development process. Mathematical models include variable parameters 

which constitute the relationship that unfold from experiments and as such, their actual values are not  known precisely but may vary within 

some ranges of uncertainty. The parametric analysis of a mathematical model becomes even more complicated if the numerical calculations 

cannot be handled with known methods. The simplest and also the most common procedure for assessing the effects of parameter variations 

on a model‟s result is to vary selected input parameters, rerun code and record the corresponding changes in the result. The model parameters 

responsible for the largest relative changes are classified to be the most important. For complex models though, the large amount of 

computing time needed by such re-calculations severely restricts the scope of this analysis. In practice, this means that the modeler can 

investigate only a few parameters that he judges a priori to be important.  

There are certain questions that are often asked regarding optimal solution of a linear programming (LP) problem. For example, what 

happens to the optimum solution (both the values of the variable and the value of the objective function) when certain changes occur in some 

of the values of the original data? These are some of the questions that parametricand sensitivity analysis tries to answer. If the objective 

function or the variables change when an original coefficient is changed, then we say that the optimal  solution of the programming is 

sensitive.  

In parametric analysis, we observe the changes that take place in the optimal solution as the original  values expressed as a linear 

function of a parameter are continuously changed. The maximum value of the parameter is such that it will ensure the feasibility and 

optimality conditions are satisfied.  

In sensitivity and parametric analysis, one needs to define four main types of objects: the work, result, configuration and program 

objects. The work object contains the sequential code for doing one run of the computation with a specific set of parameters. It takes a 

configuration object representing the parameters and returns a result object representing the output of the computation for that particular 

configuration. The program object is responsible for creating a list of parameter configurations that the programmer wants to try and then 

adding work objects with each of these configurations to the work pool so that they can be processed in parallel by the volunteer workers. 

After the parallel step, control returns to the program object, which then processes the results that have been collected and write them into a 

file, if desired. After processing these results, the programmer can proceed to try more configurations if desired, possibly depending on the 

results of the previous batch. 

Discovering that the system behaviour greatly changes for a change in a parameter value can identify a leverage point in the model, a 

parameter whose specific value can significantly be the behaviour model of the system of management in an organization for the following 

reasons. It helps to determine which decision variables are critical. It is useful for control purposes and it helps to determine the range of 

values which certain decision variables can take on without affecting a change in the optimum solution (Egbon, 2009). 

In linear programming the parameter (input data) of the model can change within certain limits without causing the optimum solution to 

change; in other words, parameters are usually not exact. With sensitivity analysis, we can ascertain the impact of this uncertainty on the 

quality of the optimum solution. The scope of linear programming does not end at finding the optimal solution to the linear model of a real 

life problem. Sensitivity analysis of linear programming continues with the optimal solution to provide additional practical insight of the 

model. Sensitivity analysis examines how sensitive the optimal solution is to changes in the coefficients of the linear programming (LP) 

model. This process is also known as post optimality analysis (Taha, 2006). Since we live in a dynamic world where changes occur 

constantly, this study of the effects on the solution due to changes in the data of a problem is very useful. The following are the types of 

changes in the data of a LP problem which can affect the feasibility/optimality of the present optimal solution. 

(i) Changes in the right-hand side (RHS) values of the linear constants 

(ii) Changes in the coefficients of the objective function. 

(iii) Changes in the technological coefficients of the decision variables. 

(iv) Addition of new variables to the problem. 

(v) Addition of new constants. 

In general, these changes may result in one of the following outcomes: 
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(i) The optimal solution remains unchanged that is, the basic variables and their values remain essentially unchanged. 

(ii) The basic variables remain the same but their values are changed. 

(iii) The basic solution changes completely. 

The detection of these outcomes by sensitivity analysis is based mainly on the primal-dual properties (Forrester, 2001). For every 

maximization linear programming problem, there is a corresponding minimization linear programming problem and vice versa. This is 

because, for businessman to maximize profit is equivalent of his minimizing costs of operating the business. These pairs of closely related 

problems are called Dual linear programming problems. The first problem for which dual is sought is referred to as the PRIMAL problem, 

which is the LP model developed for a particular situation. The other related one is the dual one which is a closely related mathematical 

problem that can be derived directly from the primal problem (Ekoko, 1999). 

When you use simplex method, you can obtain the optimal solution of the dual problem from the optimal tableau of the primal row. 

They are obtained along the z-row of the tableau and they correspond to the columns of the slack variables or the columns of the surplus 

variables (along the z-row). Furthermore, the optimum values of the objective functions of the primal and dual linear programming problems 

are equal. This fact can be used as a check whether you have arrived at optimal solution or not. Changes made in the original linear 

programming model will change the elements of the current optimal tableau, which in turn may affect the optimality or the feasibility of the 

current solution. This relationship will form the basis for economic interpretation of the linear programming model as well as for post-

optimality analysis. The primal and dual solutions are so closely related that the optimal solution of either problem directly yields (with little 

additional computation) the optimal solution of the other. Thus, in an LP model in which the number of variables is considerably smaller 

than the number of constraints, computation savings may be realized by solving the dual from which the primal solution is automatically 

determined. The element of the row vector must appear in the same order in which the basic variables are listed in the Basic column of the 

simplex tableau (Agbadudu, 1996). 

   The feasibility of the current optimum solution may be affected only if the right-hand side of the constraints is changed and if a new 

constraint is added to the model. Infeasibility occurs when at least one element of the right-hand side of the optimal tableau becomes 

negative; that is, one or more of the current basic variables become negative (Taha, 2006). The optimality may be affected if there are 

changes in the original objective function coefficients and an addition of a new variable to the model. In some linear programming models, 

the values of the variables may be increased indefinitely without violating any of the constraints, meaning that the solution space is 

unbounded in at least one variable. As a result, the objective value may increase (maximization case) indefinitely. In this case, both the 

solution space and optimum objective value are unbounded. Unboundedness points to the possibility that the model is poorly constructed 

(Taha, 2006). In practical applications of linear programming (LP), the search for an optimal solution is not usually the only item of interest. 

We may not only be interested in determining the optimal solution but also to examine how the optimal solution behaves as changes are 

made in the system. In many practical (LP) problems, the importance of analysis of possible changes cannot be over emphasized because 

some of the data used in the model development are either uncertain or real. In the process of analysis, we may want to know how the 

uncertainty of the data influences the system and how changes in the real data affect the system. Analysis of discrete changes in model 

development using data to determine possible new optimum can be found (Ekoko, 2004). 

A task in the development of realistic linear programming models is the collection of accurate and reliable numerical values for the 

coefficients. In some instances only estimates or average values of the coefficients are available. We are forced to use these point estimates 

and consider the problem to be deterministic. Hence, it is important to study the behaviour of solution to the linear programming problem 

when the coefficients of that variable are allowed to vary i.e. for what ranges of coefficient values will the deterministic solution remain 

optimal? 

Most of the work done on variations in coefficients have been on sensitivity analysis, which focuses on what happens to the original 

optimal solution when a set of new values discretely replace the initial values. In parametric analysis we are able to observe what happens to 

the LP coefficient (under investigation) as they continuously change their values that are linear functions of a parameter (Ekoko, 2005). 

In many practical problems, we want to find out not only an optimal solution but also to determine what happens to this optimal 

solution when certain changes are made in the system. We could like to determine the effects of those changes without having to solve a new 

problem. The changes to which the system is subjected in analyzing the incremental behaviour of the optimal solution can represent either 

real changes that can be made in the operation of the physical system which the linear programming model represents or fictitious changes 

which are made to investigate the effects of uncertainty in the basic data. The practical application of linear programming can be hampered at 

times by imperfect knowledge of the necessary data or by a complete lack of data (Ekoko, 2006). 

Sensitivity and parametric analysis of LP problem can provide valuable management information to deal with uncertainties. The 

uncertainty ranges can be obtained by performing the different types of sensitivity analysis depending on the nature of the uncertainty: These 

include perturbation under estimation) for all parameters that maintain the optimal basis. This provides one single range of values of 

uncertainty for all parameters. 

Parametric Analysis: Simultaneous changes of dependent parameter values from their nominal values that maintain the optimal basis. 

This provides the maximum magnitude of change for values of dependent parameters. 

Sensitivity Analysis: One change at-a-time in any parameter value that maintains the optimal basis. 

 

The Linear Programming Model  

The LP model can be stated as: 
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      (1) 

 

where   are the cost coefficients,    are the R.H.S. values with    , as the technological constraints coefficients. 

          Discrete changes having sensitivity analysis as its investigation process for determining the new optimal solution when the original 

R.H.S. values (  ) are replaced by new R.H.S. values  Much work has been done in this area. Continuous changes by which under 

parametric analysis we try to observe the transitions that occur as    is changed continuously into  

( ) 0i i ib b     ----------------------------------------------------------------(2) 

 We in this paper carry out the parametric analysis of the   which are considered as parameters of the system.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

As   increases (i.e. max0    ) , the basic variables will change their values. Some will increase (e.g.     and   ) , others will decrease 

(e.g.  and   ) and some may not change at all (e.g.   ). If iib  ,0)(  the original basis remains optimal because the         which are 

the simplex multipliers that determine the optimality condition depend only on the basis and not on the values of the basic variables, as long 

as feasibility is maintained. Eventually, however, a value   = max  is reached at which a variable, say    hits zero and becomes negative for 

 > max . If an optimal solution exists for   max  where   is arbitrarily small, then the values of the basic variables for that optimal 

solution must join continuously with the values of the basic variables for the optimal solution valid for max    . This means that to 

push   beyond max we must remove   (because removing any other variable would cause that variable to be discontinuous) and replace it 

by a nonbasic variable   , which is also zero at max   but which increases in value as   goes beyond 
xma , and which maintains 

optimality. The new optimal basis obtained by replacing  with    will have its own   range of validity given by  

max max'     

This is shown in fig. 1.1  where another variable     threatens to become negative.   

We now state some lemma and their proofs which will enable us to assume and vividly comprehend some of the steps contained in this work 

(Ekoko, 2004). 
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Background of the Procedure 

Assume that we have found an optimal solution for the original right-hand side    . If the    are to change continuously, then we can 

write for the current    

 ------------------------------------------------------------ (2)
 

if the changes are linearly related. The right-hand side is considered to be a linear function of a nonnegative parameter , and the  are 

constants which are the input data. In most problems, the changes in the    can be linearly related so that equation (2) will hold over the  

range of interest. 

The  can be any numbers, positive or negative or zero. For example, if we wish to increase  4 and keep other   constant,then  and 

all other . Any other positive number for  can also be used. If we wanted to increase  5 and at the same time decrease  6 at one 

third the rate, then 6   
 

3
  5  1 and all other .  Again, any negative and positive numbers would do as well for 6  and 5

respectively as long as  
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We know from equation (3), that the values of the basic variables for the original optimum are given by 
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where, as always, we assume that the variables are relabeled so that the optimal basis involves the first   variables. Since   is a function of 

 , we obtain, by substituting equation (2) into equation (3), 
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In (a)   can take any positive value without violating feasibility condition. The obvious implication of this is that the optimal basis 

remains optimal no matter how large the changes are in the    (for the given i ). In this case, we say that the RHS is open, and parametric 

analysis terminates because there is nothing left for it to do. In (b) however, we cannot increase   indefinitely without violating feasibility 

condition. We have to determine the largest value that can be assigned to   i.e.     

This is given by: 
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The variable which goes to zero when         is denoted by      . This variable must be removed from the basis, and another one must 

take its place if   is to be pushed beyond     . Our old optimal basis remained optimal up to this point.  

 

Lemma 2 

The new basis is formed when the non-basic variable    replaces the basic variable   in the interval maxmax '  if  
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Numerical Illustration of sensitivity analysis  
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The associated optimum tableau for the primal is given as  
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Assuming the gaps are observed in the optimal solution tableau  
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Let the optimal solution be    
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(b) 
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Numerical Illustration of Parametric Analysis 

Changes in the constraints in real life LP problems are crucial, especially when we consider the fact that the quantity and quality of 

variables fluctuate from time to time and from season to season  (Oluwatusin, 2013). 

Example   
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Considering that we have found an optimal solution corresponding to the original right –hand side   , if the   are to change 

continuously, then we can write for the current 
ib  as  

0)(   iii abb  --------------------------------------------(2)  

If the changes are linearly related, the right –hand side is considered to be a linear functions of a non negative parameter  , and the 

constants i  are the input data. This is presented in equation (2)  
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





























1

3

0

1

1

2

2

1

2

3
0

2

3

2

5
1

2

1

2

1
0

1

kB   

Since 



m

k

kikB
1

0  for i then max  is infinite because  can be increased indefinitely without violating feasibility condition. The R.H.S is 

said to be OPEN and we need not to proceed further.  

Example 2 

Iteration 1 of parametric analysis  

 

Let 25.0,1 32   andi be the constants as input data for the parametric analysis.  

From Optimum Tableau 

 


















































































4

1

4

11

4

3

2

2

1

1

2

1

2

3
0

2

3

2

5
1

2

1

2

1
0

1

k  

Compute 2
4/3

2/3
minmin

1

1 























i

k

m

k

ik

k

m

k

ik

i

b





 

Thus, row 1 is the pivot row 

Not applicable here, since  kjrkaB is not 0 for all i  

,

rja  kjrkaB for nj ,....,2,1  

,

ja  kjrkaB which is 1
st
 row of parameter tableau 

 











2

1
,

2

1
01,0'

ija  

Column selection  

3
2/1

2/3

0








ij

jj

a a

cz
Min  
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Thus,  3       pivot column is the 4
th

 column and 









2

1
is our pivot element 





m

k

kik

m

k

kiki aBbBtx
11

)(   ------------------ (3)  

From the optimal tableau and equation 3, we have  

Parametric tableau 1 

B.V    2 3 4 5 R.H.S 

 2 3 

   

0         1          0        (-1/2)     ½ 

0         0         1         5/2       -3/2 

1         0         0         3/2        -1/2 

0   

11 

5 

Z 0         0          0        3/2        ½ 27/2 

Not applicable here  

Current max =2 from determination of pivot row selection  

2nd Iteration  

Obtain parameter tableau 2 

B.V    2 3 4 5 R.H.S 

 4  

 3  

   

0        -2        0        1          -1 

0        5         1        0           1 

1         3         0        0          1 

0 

11 

5 

Z 0         3         0        0        2 27/2 

Pivot row selection  

  5.45.4.7.8min
2

9
.

2/3

13
minmin

1

1 



















i

k

m

k

ik

k

m

k

ik

i

b





 

Thus, third row is the pivot row  

Not applicable here  

0.)10031( ''  isanoeia rjrj  

Since 0rja , we cannot increase   beyond the current max without violation offeasibility condition. That is   has reached a maximum 

possible value.  

:. 5.4'

max  as obtained on determination of pivot row of 2nd iteration  

 Not applicable  

Example 3 

Iteration 1 

Let 3.02.0,1.0 321  aand be the constants as input data for the parametric analysis.  

 

 

 

 

 

Step 4:  

  3030,30min

20/3

2/9
,

20/1

2/3
minmin

3

1

3

1


























i

k

k

ik

k

k

ik

i

b





 

 

We arbitrarily select row 1 as pivot row  
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



3

1

3

1

)0(
k

kik

k

kiki aBbBx      

Not applicable here since kijB  is not 0  for all i  





m

k

ijikrj aBa
1

'
which is 1st row of parametric tableau 5  

 


















0

1

0

0
2
1

2
1

 

 
2
1

2
1' 010 ija  

Parametric Tableau 3 

 

B.V  x1          x2           x3          x4            x5 R.H.S 

x2 

x3 

x1 

0        1           0        (-1/2)       ½ 

0         0          1        5/2          -3/2 

1         0          0        3/2        -1/2 

0 

7 

0  

Z 0         0          0        3/2           ½ 27/2 

Column selection  

3
2/1

2/3

0








rj

jj

a a

cz
Min

ij

 i.e column 4 is the pivot column.  

1
st
 Row and 4

th
 column are selected. Therefore 

2

1
  becomes the pivot element  

Note applicable here  

current 30max   

2
nd

 iteration  

Obtain parametric tableau 4 

Parametric Tableau 4 

B.V  x1          x2           x3          x4            x5 R.H.S 

x4 

x3 

x1 

0        -2           0        1       -1 

0         5          1        0          1 

1         3          0        0        1 

0 

7 

0  

Z 0         3          0        3/2           ½ 27/2 

Pivot row selection  

  3030,65min
20/3

9
,

5/1

13
minmin

1

1 























i

k

m

k

ik

k

m

k

ik

i

b




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Not applicable here  

 

Discussion  

Parametric analysis test helps the modeler to understand the dynamics of a system by experimenting with a range of values which 

offers insights into behavious of a system in extreme situations. Many parameters in system dynamic models represent quantities that are 

very difficult or even impossible to measure. By this paper  it is possible to determine how “sensitive” a model is to sudden and continuous 

changes in the model. In this work, attention has been given to parameters which were performed as a series of tests in which the modeler 

sets different parameter values to see how a change in the parameter causes a change in the dynamic behavior of the system.  

In example 1, the max is infinite as  can be increased indefinitely without violating feasibility condition. In this case the right-

hand-side (RHS) values are said to be open. 

In the examples, some of the basic variables increase in value and others decrease as the parameter   continuously increases from 

  to  max in a given parametric iteration. Among the basic variables that decrease as   increases, one or more of them reduces to the value 

zero at the end of a given parametric iteration. Such a basic variable is the one in the pivot row that is replaced by the nonbasic variable in 

the pivot column. When there is more than one parametric iteration, each of the iterations is demarcated by the ordinate of its  max. In other 

words each parametric iteration has its own  maxand by the workings, we arrive at the final  max. Therefore, the lemma is true.  

 

Conclusion 

This paper work has enabled us to understand the dynamic behaviour of a linear program with respect to the range of values which 

certain decision variables can take without violating optimality and feasibility conditions.  

Moreover, sensitivity and parametric analysis are useful to  management with respect to decision variables that are critical control 

purpose and to determine range of values which certain decision variable could take on without  affecting a change in the optimum solution, 

which could also enable managers to identify investment opportunities and could provide information to enhance a more efficient allocation 

of resources and risk management. 
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